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INDIRECT MEASUREMENTS 
OF ATMOSPHERIC TEMPERATURE PROFILES FROM SATELLITES: 

I I .  MATHEMATICAL ASPECTS OF THE INVERSION PROBLEM 
S. TWOMEY 

U.S. Naval Research Laboratory, Washington, D.C. 

ABSTRACT 
The difficulties and instabilities accompanying the inversion of radiance data to infer temperature structure 

are closely related to the high degree of interdependence existing among these nominally independent measurements. 
The radiance measurements discussed in the accompanying papers are shown to be interdependent to a marked 

degree. It is shown that one of the measurements can be predicted from the others with an accuracy which is only 
a little worse than the experimental accuracy, 

The application of this kind of analysis to determine optimum choices of measurements and the information content 
thereof is outlined. 

1. INTRODUCTION 
A review of the problems associated with indirect 

inferences such as the determination of temperature 
structure from measurements of atmospheric radiance has 
been given elsewhere by the writer (Twomey [3]). There 
it was shown iihat the integral equation 

or the matrix relationship (to which the functional rela- 
tionship is in practice sooner or later reduced) 

Af=g 

were in general unstable, and that this instability was 
worse the smoother the kernel. In this situation a kernel 
which is well behaved in the usual sense is not desirable; 
the optical transmittances which provide the kernels in 
the present problem are of course smoot8h and well behaved 
(indeed monotonic) so a considerable degree of instability 
must be expected. 

Closely associated with the inherent instability of the 
inversion is the degree of interdependence among the 
kernels and thereby amongst the solutions. This question 
was discussed in the reference cited above and is most 

. clearly exemplified in a recent paper by Mateer [2] who 
showed that the Umkehr data used to infer ozone distri- 
butions could be described to well within the experimental 
accuracy by combinations of four basic independent 
patterns. Hence even when 40 or 50 or more Umkehr 
data points are measured, only four independent pieces of 
information result. Umkehr observations give integral 
transform data for an exponential kernel exp (-yz). 

It is apparent that since infrared transmittance curves 
(such as those discussed in the preceding paper of this 
series) are essentially combinations of exponentials, one 
must expect a very similar result to  that reported by 

Mateer. One cannot in this case use sets of observed 
values of the transform g(y) as a basis, as Mateer was able 
to do, since the data do not yet exist. However, the 
possible degree of independence can be inferred by exam- 
ining the kernels themselves. In  view of the cost of 
adding data points to a satellite experiment, it is obviously 
important to make such an analysis. 

2. THE INTERDEPENDENCE OF THE MEASUREMENTS 
If, say, six measurements 

g < = L  K,(z)f(z)&+e, (i=l, 2,. . ., 6) 

are made in the presence of some error “noise”, it may be 
possible to find a combination of five kernels which so 
nearly approximate the sixth that the sixth measurement 
can be predicted in advance to better than the experi- 
mental error. It is also possible that two or more measure- 
ments can be thus predicted from the remainder. 

To  determine the degree of independence among N 
measurements gt such that 

where the ei are a set of randomly distributed errors with 
r.m.s. value e,  say, the above equation is multiplied by an 
arbitrary factor and is summed over all i, to give: 

O h  

G tigr=C t i e ( +  J “ c t t ~ ( z ) j ( z ) d z .  

Since the ti are arbitrary, they may be normalized by a 
requirement that Zf: = 1. Then 

a E  

This equation provides a formula for predicting one of 
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the g r  from measurements of the others; the first term on 
the right side is completely dependent on the other g’s, 
and represents the predictable part; the bracketed ex- 
pression is unpredictable, i.e., independent of the other 
measurements-it is therefore the only part of g z  contain- 
ing new information. When the two terms in this ex- 
pression are equal, the error and the information-bearing 
parts are equal, and one may speak of this as a “signal-to- 
noise” ratio of unity. The process of finding the best 
prediction formula is that of varying the f t  so as to  make 

l f i t & f ( z ) j ( x ) d x  as small as possible for all functions 

f(z) which may be encountered. If thereby a set of t i  is 
obtained such that 

I 

for aUfs which are likely to occur, then one of the g i  can 
be predicted, with an uncertainty of prediction which is 
no larger than the observational error. The expected 
value of IZf,t,l is merely the r.m.s. error e for random 
errors. For any continuous and, hence, bounded j ( x ) ,  it  
is possible to write 

where C is a finite number and j ( x )  takes the value C at 
least once in ( a ,  b ) ;  hence it is possible to find a number 
f,such that 

Hence (1) will hold if 

and the question of mutual independence can be examined 
by considering the minimal value which 11 eiK,(z)dz/ 
can be made to attain by a suitable selection of the f r .  
By the Schwartz inequality 

11 E,K,(z)dx I I= Js.” t&(z)I2dz 

= F a & 1 1 2 .  

Q is the quadratic form whose associated matrix is 

its minimum value is the smallest XI of the eigenvalues 
of the matrix, and it attains this minimum when ( f l ,  f z ,  
. . ., 5N) coincides with the corresponding eigenvector 
(Courant-Hilbert [I] (pp. 31-34)). The smallest value 

attained by (lCttK1(2)dzl  is therefore less than 
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d G &  If this is less than leifml, i.e., if dGSlef&’\/ 
fi, a t  least one of the g, can be predicted from 
the remainder with a precision comparable to the 
experimental error; if n of the eigenvalues are less than 
e2 j2 / (b -a ) ,  n of the g t  can be so predicted and no more 
than N-n independent pieces of information can be 
derived. 

In the problem of temperature sounding by infrared 
measurements, the kernels K,(z) can represent either the 
transmittance functions or their derivatives, depending 
on whether the radiative transfer equation is written 
(see equation (9) of Wark and Fleming in this series) 

or integrated by parts to give 

Because of the numerical problems of differentiation, it is 
better here to operate with the second form. The variable 
z can be any variable which decreases monotonically 
through the atmosphere. In the following the average of 
the set of transmittances was used as the variable-it has 
tge necessary properties, and the additional convenience 
of ranging from 0 to  1 as well as the merit of physical 
meaning. However, it  is obvious that the choice of 
variable is not critical. The variable used here will be 

The magnitude of e/lj,l.&-u must be estimated for 
comparison with the eigenvalues. e is of the order - of 
0.5 erg/(cm.Z sec. strdn. cm.-l) ; for the present z, db-a 
is unity;f, i s  now the probable maximum of dB/d;c; while 
an exact figure is not needed it is important for a realistic 
appraisal that the value chosen be not too large (which 
would lead to an over-optimistic appraisal of the degree 
of independence, one which would only be valid were very 
large variations in atmospheric temperature to be ex- 
pected) or too small (which would lead to an over-pessi- 
mistic assessment). It is important to realize that the 
measure of independence is meaningful only as applied to 
the manifold of functions from which actual indicial func- 
tions may be drawn; if arbitrarily large excursions of 
temperature and lapse rate occurred from time to time at 
all levels in the atmosphere, then any N distinct measure- 
ments would be independent. 

For atmospheres such as actually occur, a fair estimate 
for ldB/dzl- is several hundred, in the appropriate units. 
(It should be noted that this quantity is not a local maxi- 
mum of the derivative, but a number sufficient to make 
the inequality 

designated 5. - 

true for each i and every B(z) which may occur. It is 
therefore, by the mean-value theorem, an upper bound of 
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an average in the large, and is little affected by large 
gradients of limited extent; it is in reality closer to the 
mean value of B than to the local maxima of dB/dx.) In 
terms of the eigenvalues of the matrix 

therefore, N independent pieces of information cannot be 
derived from the data with a signal-to-noise ratio of S or 
better if any of the N eigenvalues satisfies the inequality 
(in round numbers) 

Ji< ~ o - ~ s .  
It should however be noted that the inequality is sufficient, 
but not necessary. Necessary conditions do not appear 
to be obtainable, but the whole question can be avoided 
if the minimal eigenvector is used to produce the linear 
combination of kernels Z.$i~t(z). The smallness of the 
resulting function and its inner products with representa- 
tive indicia1 functions can then be used directly and com- 
pared with the errors. 

3. APPLICATION TO EXPERIMENTAL DATA 
The application of these procedures to experimental 

data is illuminating and may serve to  dispose of the im- 
pression (which some recent papers convey) that the 
problems and limitations of indirect sensing spring from 
the methods of solution rather than from the fundamental 
nature of what is measured. The four transmittance 
functions for ground measurements by James (part 
IV of this series) were used to compute the matrix 
( 1  s T & ) T j ( Z ) d Z [ [ ,  for which the eigenvector associated with 
the smallest eigenvalue (0.000057) was (0.04325, -0.5552, 
0.7849, -0.2719). The linear combination 0 . 0 4 3 2 5 ~ ~  
- 0.5552r2+ 0 . 7 8 4 9 ~ ~ -  0 . 2 7 1 9 ~ ~  was therefore that with 
the smallest magnitude (norm), hence the best estimate which 
could be made of one of the measurements was that of 13: 
this was evidently given by neglecting the (small) linear com- 
bination 0.04325 I,-0.5552 12$0.7849 1,-0.2719 14. Thus 
13z -0.0551 Il+0.7074 12+ 0.3464 I,. Inserting actual 
measurements (131.01, 132.39, 133.07) for 11, Iz, I4 one 
obtains : 

I~ZZ 132.53. 

The actual measurement of I3 was: 

13= 132.85k0.5. 

Hence that measurement was predictable to better than 
the experimental error, and in that sense was redundant. 

For the satellite case discussed by Wark and Fleming in 
the preceding paper, a similar procedure was followed 
using their six transmittance curves. The matrix O= 
11 $r~(z)r,(z)dzll was computed and its eigenvalues and 
eigenvectors derived. 

The results were as follows (rounded mainly to three 
significant figures) : 

89.3  91.4 92 .9  94 .0  9 4 . 8 1  
89 .3  100.0 102.9 105.0 106.5 107.5 
91 .4  102.9 106.7 109.4 111.4 112.8 
92.9 105.0 109.4 112.7 115.3 117.0 
94 .0  106.5 111.4 115.3 118.4 120, 5 
94.8 107.5 112.8 117.0 120.5 122.9 ; 

eigenvalues, 7.18, 0.595, 0.000184, 0.0733, 0.00384, 634; 
eigenvectors, 

- .128 - .654 

The smallest eigenvalue is comparable to, but larger than, 
the acceptable limit; one may infer that a sixth piece of 
independent information may be represented in the data; 
whether it can be inferred with any degree of confidence 
requires a more detailed analysis. 

The eigenvector provides a set of coefficients which by 
the previous analysis can be used in two ways 

(i) to obtain an approximation of one transmittance 
curve in terms of the others 

(ii) to obtain a prediction of one radiance from the 
others. 

The approximation for the fourth transmittance curve 
is, of course, obtained by neglecting the linear combina- 
tion 0 . 0 0 3 6 5 ~ ~  - 0 . 0 9 7 8 ~ ~  + 0 . 3 8 1 ~ ~  - 0.654~~ f 0.6027, - 
0 . 2 3 6 ~ ~ ;  in other words, it is T~ =O.OO558~,-0.1496~~+ 

This approximation gives the fourth transmittance with 
considerable accuracy. Table 1 shows for various levels 
the actual transmittance and that computed by the above 
formula. The actual and “synthetic” transmittances are 
indistinguishable at  the 1 percent level from the top of the 
atmosphere to about ~ ~ 0 . 2 ;  deviations up to 10 percent 
of the actual transmittances exist below this level (through 
the troposphere), but since T is less than 0.2 in this region 
a 10 percent change in transmittance will have quite a 
small effect. The same coefficients can, of course, be 
applied to the radiances themselves. From the sets of 
radiances used by Wark and Fleming for Key West, Little 

0.583~3f0.921~5-0.360~6. 

TABLE 1.-Comparison of actual transmittance (69’7-cm.-l channel) 
with that given by the linear combination of the other Jive channel 
transmittances 

0. loo 
1. 13 
2 31 
3.73 
5.72 
10.1 
14.1 

27.6 
36.6 
44.3 
63.6 

m. 7 

1. MI0 . gel 
,982 
.972 
.959 
.932 
,808 
.871 
.833 
.784 
.744 
.698 

1. wo 
.989 . 981 
.971 
.957 
.932 
.908 
,870 
.a34 
.786 
.745 
.%Pa 

64.8 

m4 
7a 4 

108 
139 
169 
194 

, 2 3 4  
283 
360 
415 
652 

0.645 
. a 3  
.531 
.456 
.354 
.289 
.m 
.133 . 070 .om .m .ooo 

0.646 
.682 
I529 
.453 
.350 
.%?a 
.212 
.148 
.079 
.014 -. 011 -. 025 
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Rock, Seattle, and Churchill for the first, second, third, 
fifth, and sixth channels, the linear combination predicts 
the fourth radiances to be 39.67, 40.43, 39.19, and 32.84 
erg/(cm.2 sec.’ strdn. cm.-‘), whereas they were actually 
40.49, 41.33, 39.61, and 33.35 erg/(cm.2 sec. strdn. cm.-’), 
respectively. Thus the fourth radiances are not entirely 
dependent on the others (as also inferred from the eigen- 
values), but the error noise, shown by Wark and Fleming 
to be acceptable up to about 0.5 erg/(cme2 sec. strdn. 
cm.-l), is comparable to the informative parts of these 
radiances. 

4. FURTHER APPLICATIONS 
The functions T , ( x ) ,  T * ( x ) ,  . . ., ~“(5) provide a set of 

skew vectors in N dimensional function space; the 
functions 

(b(4 =E171(2) + b ( 4  + * . * + E N T N ( Z ) ,  

when the f i  are elements of the eigenvectors of !? taken 
in turn, provide an orthogonal set of function-vectors. 
The latter are not, however, normal-their norms equal 
the corresponding eigenvalues. This is readily demon- 
strated: let E =  ( f I ,  &, . . ., &,) and {= (Pl, Pz, . . ., S N )  
be eigenvectors of ?l! with eigenvalues X and B respectively. 
Then 

+ SN7N( 2) ]& = E ** c = 84 * f = @E 5 = 0 

unless E and f are identical, in which event the value is 
XE . E=A; the symbol * denotes the transpose. 

Thus when the analysis of the previous section was 
carried out, an orthogonal system of functions was im- 
plicitly produced. The previous results show that one 
(or more) of these “directions” are but very weakly 
represented in the observations; Le., the observed func- 
tions are all almost orthogonal to one or more of these 
function-vec tors. 

If a measurement is to  be eliminated with the least loss 
of information, that ~ ~ ( 2 )  clearly should be chosen which 
is nearest to the most weakly represented base function- 
vector. 

4=(41b), 42(4, * * - 7  ( P N ( 2 ) )  

and if (u l j ,  upj ,  . . ., uNj), j=l ,  2: . . ., N are the eigen- 
vectors of !?, then the sets of functlons T= (q( x) , Q( x) , . . ., 
~ ~ ( 5 ) )  and + are related by 

If the orthogonal set is 

+= u *T 

r= u9i 

for U=IJuitJI is an orthogonal matrix since % is a real 
symmetric matrix. 

Any T ~ ( X )  can therefore be resolved into a linear com- 
bination Zku ir(Pk(z) ; the relative magnitude of the Zth 
component is therefore uil. The T*(z)  “nearest” to  4 1 ( ~ )  
is that for which the component with respect to  ( ~ ~ ( x )  is 
relatively largest. The measurement to be rejected for 

least loss of information is therefore that giving rise to the 
largest u,I-which follows by inspection of the eigenvalues 
and eigenvectors. ( I  is the index of the smallest eigen- 
value, and is usually 1;  the corresponding eigenvector 
will then be the first column of U; the ith measurement 
is then that selected for deletion, if the i th element of 
the first column is the largest in the column.) 

If a large number N of possible channels and a given 
experimental accuracy are considered, then the optimum 
location for any M measurements ( M < N )  can be found as 
follows : 

(i) a complete transmittance curve is computed for 
each channel under consideration. 

(ii) the matrix !?= l ~ ~ T i ( Z ) T , ( Z ) d X ( l  is computed and 
eigenvectors are found. 

(iii) the number of eigenvalues larger t,han the per- 
missible lower bound (e.g. the error noise level 
or some number of times larger) gives the number 
of independent pieces of information u(N) con- 
tained in the measurement. 

(iv) assume the smallest eigenvalue is the first, then 
the eigenvector matrix U is examined to find k 
such that ukz is the largest of the set {u i l } ,  
i=1,. . . , N .  

(v) the kth row and column are deleted from !? to 
give a new !? of order N- 1. 

(vi) the entire procedure is repeated for !? of order 
M=N-1, then N-2, and so on. At each stage 
the number of independent pieces of information 
v(M) and the optimum choice of channels is 
obtained. 

The application of the results of the analysis is obvious. 
A plot of v ( M )  versus M ,  for instance, will show the return 
(in terms of information) versus number of channels 
or cost. The effect of varying instrumental resolution 
or accuracy can be gauged by carrying out the computa- 
tions with transmissions for varying slit widths or accu- 
racy. Many of these questions can be examined quali- 
tatively in other ways, but an objective numerical 
procedure has obvious advantages. 

Finally it may be remarked that a deliberate redundancy 
for control purposes can be readily achieved by including 
a measurement which is predictable from the others with 
a high degree of confidence, The selection of the most 
suitable spectral interval for this purpose can be made 
by the methods just described, the combinations with 
small eigenvalues being now sought rather than rejected. 

REFERENCES 
1. R. Courant and D. Hilbert, Methods of Mathematical Physics, 

vol. I ,  Interscience Publishers, New York, 1953. 
2. C. Mateer, “On the Information Content of Umkehr Observa- 

tions,” Journal of the Atmospheric Sciences, vol. 22, No. 4, 
July 1965, pp. 370-381. 

3. S. Twomey, “The Application of Numerical Filtering to the 
Solution of Integral Equations Encountered in Indirect Sensing 
Measurements,” Journal of the Franklin Institute, vol. 279, 
NO. 2, 1965, pp. 95-109. 

[Received December 8,  1965; rewised April 18, 19661 


